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SUMMARY TR

The series-expansion method of H. GSrtler is applied to the two-dimensional
stagnation flow about symmetric bodies with symmetric distributions of magnetic
field. Numerical computations are presented from which skin friction and heat
transfer can be calculated through third order in a modified surface coordinate
provided the external velocity, magnetic field, and enthalpy are known. A small
magnetic Reynolds number is assumed; the Prandtl number ig taken to be unity.
The three chosen values of an interaction parameter represent magnetic fields in
which the component normal to the wall has values at the stagnation point that
are zero, small, and large.

INTRODUCTION

The discussions of the hydromagnetic flow at a two-dimensional stagnation
point presented in the literature have in each case been gimilarity treatments.
With the velocity outside the boundary layer varying as the distance from the
stagnation point, the normal component of the magnetic field is constant. In
reference 1 it is pointed out that the skin friction was markedly reduced by the
action of the normal magnetic field. Later investigations (refs. 2 to 4) showed
that the effect upon heat transfer was not as strong. Reference o treats this
problem when the fluld is compressible, while reference 6 discusses the corre-
sponding axisymmetric boundary layer.

In this report the restriction to similarity will be relaxed so that stagna-
tion flows around symmetric, blunt bodies of otherwise arbitrary shape and with
symmetric but otherwise arbitrary distributions of magnetic fields may be
studied. For this purpose, the series-expansion method of Gortler (refs. 7
and £) will be extended to flows with magnetic fields present. In addition to
its ability to handle arbitrary pressure gradients, the Gortler method has the
feature, in contrast to the usual expansion in the streamwise coordinate, that
the first term (zero order) of the series solution matches the outer velocity at
the edge of the boundary layer at all stations along the body. Subsequent terms
represent corrections to the velocity profile that are due to action within the
boundary layer itself. Although the series does converge rapidly, Gortler found



that, for stagnation-point flows, this series was not more advantageous than the
well-known Blasius series; however, for the present burpose of extension to mag-
netic effects, the GSrtler series has the advantage that the nonmagnetic
boundary-layer terms have already been computed to a high degree of precision.
This 1s a convenience in undertaking further numerical computations.

Several extensions of GSrtler's work have already been made. The tempera-
ture has been developed in a Gdrtler series (refs. 9 ang 10), and the case of the
flow over a flat plate with a current-carrying wire near its surface has been
solved in reference 11. The developments discussed in this report are all based
on the assumption that the magnetic Reynoclds number is small.

SYMBCLS
B magnetic field
b dimensionless magnetic field
cp heat capacity
D, differential operator
E electric field
F(e,m) reduced stream function

IR ST
higher order stream functions, where (1,j,k) = (0,1,2,5)
fo,15x:T1k,0
1,581, %0815,k
higher order enthalpy functions, where (i,j,k) = (0,1,2,3)

€0,1jk»81jk,0

H dimensionless enthalpy difference
h enthalpy

k heat conductivity

L characteristic length

Ly, differential operator in eq. (34)
P pressure

Pr Prandtl number



Re

Re1

dimensionless pressure

heat transfer

magnetic pressure number

magnetic pressure number for symmetric magnetic field, defined by egq. (65)

magnetic pressure number for antisymmetric magnetic field, defined by
eq. (62b)

magnetic Reynolds number

magnetic Reynolds number based on stream-velocity gradient at X = 0, de-
fined by eq. (62a)

Reynolds number

Reynolds number based on stream-velocity gradient at X = 0, defined by
eq. (58)

temperature

time

velocity components in X- and Y-directions
velocity external to boundary layer
velocity

dimensionless velocity components
dimensionless velocity

coordinates along and normal to body surface
principal function, defined by eg. (27a)
boundary-layer thickness

boundary-layer coordinate

magnetic interaction coefficient, defined by eq. (27b)
magnetic permeablility

kinematic viscosity

coordinate in streamwise direction



0 density

o electrical conductivity

T skin friction

s stream function

w vorticity

Subscripts:

o reference quantity

X, Y vector components

£,7 partial derivgtives

0,1,z, . . . coefficients in a series expansion
Superscripts:

' first derivative
" second derivative

intermediate variable

FLOWS AT SMALL MAGNETIC REYNOLDS NUMRER

A body, immersed in s conducting fluid, from which there emanates a magnetic
field is considered. The fluid has constant electrical conductivity, density,
viscosity, thermal conductivity, and heat capacity. Under the further restric-
tions of steady velocity field and steady magnetic field, the governing equations
for the motion of the fluid are

—_

V-U=0 (1)

. = - %'vP + VU + g F+Tx3B) x3B (2)

The action of the velocity field upon the magnetic field is described by the
equation

7B = -pov x (T x B) (3)
One important restriction placed upon equations (2) and (3) is the representation
of the electrical conductivity as a scalar o. If the fluid is a gas, it must be
sufficiently dense for the mean free path of a charged particle to be much

smaller than the radiusg of gyration in the magnetic field. Equations are written
in mks units.

a4
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In order to find the dimensionless parameters that characterize the various
forces involved in the motion, a characteristic velocity U,, a characteristic

value of the magnetic fileld B,, and a characteristic length L, which is assumed
to characterize both the body and the magnetic field, are used to nondimensional-
ize. The aforementioned assumption is justified if the currents generating the
magnetic field are not too close to the bvody surface; 1f they are near the body
center, the radius of curvature of the field at the body surface must be compar-
able to the radius of curvature of the body. If the dimensionless dynamic vari-
ables are dencted by lower-case letters, the governing equations (eqgs. (1) to
(3), respectively,) become

V- U=0 (4)

i’-‘ﬁ:-&?p+-}—‘\J2ﬁ’+RmR L+ﬁ’»<g x B (3)
Re h U,B, ’

7L = -R 7 X (4 x D) (6)

The parameters that appear are the magnetic pressure number Ry = Bg/ppUg
and the magnetic Reynolds number R = noU.L, which is common to the interaction
terms of equations (5) and (6). In the following work R, is considered to be

small, but at this point no restriction is placed on Ry. It is appropriate,
then, to write the series (ref. 12):

—)_—) — 2—>
u = uO + Rmul + Rmu2 + .
—>_—> - 2—> -
b = Dby + R by + Riby + . . . (7)
Pp=p. +tRp + Rzp + .

0 m-1 m- 2

The electric field E ig the field measured by an observer at rest with re-
spect to the body. In general, the electric field is the result both of any ex-
terngl generators and of the separation of charges by the electromotive force
T X b. While the Tirst of these is excluded, the second effect may arise either
from the polarization of molecules or from the separation of free charges so that
the fluid is not electrically neutral everywhere. The permittivity of the fluid
is assumed to be constant everywhere, and the flow is assumed to be truly two-
dimensional with no end effects. Then E may be set equal to O becsuse the
fluid is neutral and because the polarization field, when added to the electromo-
tive force, reduces the effective conductivity by the same factor over the entire
field. Another justification for choosing E = 0 1is to consider the two-
dimensicnal geometry as the limit of an axisymmetric geometry as the radius be-
comes very large. Inasmuch as the electric potential must be continuous along a
circular path about the axis of symmetry, the azimuthal component of the electric
field must vanish (ref. 13).

Equations (4) to (8), respectively, become to lowest order

V- dg =0 (8)



= . ET — - "l 2’_) - b >
e Juo = vpo + Re™+V uy + RmRh(uO X bO) X bo (9)

vzﬁo =0 (10)

According to equation (10), the magnetic field is unaffected by the motion of the
fluid to the order indicated, but the velocity field will, in general, be dis-
turbed by the magnetic field because the range of Ry 1s unrestricted and the
product R Ry, may be of order unity or greater.

BOUNDARY-LAYER ANALYSIS

The dimensional momentum equaetion for the fluid and the modifications re-
sulting from the assumption of a viscous boundary layer shall be considered now.
In a two-dimensional geometry let the X-coordinate be along the body while the
Y-coordinate is normal to the body. The corresponding components of velocity are
U and V. The components of the Lorentz force are proportional to

-UBG + VByBy (11a)

and
-VB§ + UByBy (11p)

If ©® 1is characteristic of the boundary-layer thickness, then
Vv &
TN <1 (12)

Consequently, the force terms reduce to

_1m2
UBY (13a)

and

+UByBy (13b)

In the inertia and viscous forces certain terms also drop out, because the ratio
of boundary-layer thickness to body curvature 6/L is small. The final form of
the momentum equation is

U WU -g._2 1P d%y
LSl Slgr > Sl g (14)
oP
0 = dUByBy - 5 (15)

From equations (14) and (15) it follows that

6



g% ~ R_Ry, (16)

As long as this product remains of order unity or less, it is permissible to re-

place the streamwise pressure gradient in the boundary layer with the streamwise

pressure gradient in the external stream, for then the pressure increment across

the boundary layer is 0(6/L) compared to the pressure drop along the body. The
pressure gradient is obtained by writing equation (14) at the edge of the bound -

ary layer

au
- 2 10P
Ue 57 = 5 UeBY - 5 X (17)

In equation (17) the value of By at the edge of the boundary leyer may be
equated to the value at the wall. Subtracting equation (17) from equation (14)
results in a form of the boundary-layer equation that is free of the pressure
gradient:

U U g .2 U We  d%y
US)E-FVFY-B'BYUe(l—@)-UeaT—V-a}E (18)

The boundary conditions to be used with this equation are that U vanish at
the body surface and approach the velocity of the inviscid stream at the outer
edge of the boundary layer. The second of these must be used with care. The in-
teraction of the magnetic field and the velocity field produces a vorticity in
the inviscid stream. If the vorticity in the inviscid stream approaches in mag-
nitude the vorticity due to viscosity in the boundary layer, it 1s necessary to
augment the boundary condition at the outer edge of the boundary layer by a
matching of the velocity derivatives. In a two-dimensional incompressible flow,
the vorticity production is given by

3D " o0 . O3 > 2
S HU-W = VD + S B - (U x B) (19)

The first term on the right represents the generation of vorticity by viscous ac-
tion in the boundary layer; its approximate magnitude is vUe/65. The second
term is the vorticity production by the Lorentz force, which has an approximate
magnitude gUeBz/pL. The two lengths appearing are related by the Reynolds
number :

(L/3)% ~ Re
It fellows that

Vorticity production in inviscid flow _ Smfh
Vorticity production in boundary layer 1/§€

As long as

R Ry, << ~+/Re (21)



it Is permissible to match boundary-layer and inviscid-flow velocities at the
edge of the boundary layer. Otherwise, it is necessary to use the boundary con-
dition involving velocity derivatives. The restriction (21) on Ry, 1is generally
not as severe as the previous restriction (16). It is assumed in the following
discussion that the ratio {20) is small.

APPLICATION OF GORTLER TRANSFORMATION

Following Gértler (ref. 7) the boundary-layer equation (eq. (18)) will be
transformed to a system of ordinary differential equations. First, there are de-
fined the dimensionless variables

A 1 X 1
£ = " / Ua(X)ax N = -;Ue(X)Y
¢ (22)
A =a =9 T = P = UZZ(UV + ULTD)
LI VN t e e e
Substituting these variables in equation (18) results in
W + Ty - BE)(L - 0%) - R(EV(L - 9) = Ty (23)
£ Ul m
where
-
A VU
ple) = —
Ue

A@) = 22
pUe )
Next, the Blasius transformation
"~
e =% )
- A} Ll ng
n= A~ (GD)
V& |
EA) = VERF(e,n)
is employed in equation (23) to obtain
2 _ ) .
N B(g)(l - Fn) FAE)(L - Fy) = 2(R T, - FGF, ) (26)

8



where

B(e) = 26B(8) (272)
2k gVBE

M) = —— (270)
oUa

Equation (26) is Gdrtler's equation for a boundary layer in an arbitrery pressure
gradient with the addition of the term containing NE), which represents the in-
fluence of the magnetic field on the flow. The parameter A(&) combines the ef-
fects of the magnetic field distribution and the outer velocity distribution.

The boundary conditions associated with equation (26) have also been devel-
oped by Gortler (ref. 12). The requirement that the stream function vanish on
the surface 1is

F(&,0) =0 (282)

The condition of no slip (U = 0) on the surface becomes

Fn(g,o> =0 (28b)

and the matching condition at the edge of the boundary layer, U = Ug, transforms
to

Fn(gyoo) = 1 (ZBC)

A system of ordinary differential equations can e derived from equa-
tion (26) by first expanding the reduced stream function F(t,n) and the param-
eters A(t) and B(t) in power series in §&:

Ros]
—
urr
~—
I

Bo + BpE + -
7\(&) = 7\0 + 7\1& + . . . (29)
F(e,n) = Foln) + F(n)e + Fa(n)e? + .

When equations (29) are substituted into equation (26) and coefficients of like
powers of £ are equated, an ordinary differential equation in 1n for each of

the functions Fg(n), Fi(n), . . . results. The expansion coefficients
(Bgs By, - - - and Ag, My, - - .) depend upon the external velocity distribu-
tion

Uy =Ug + U1K + . . . (30)

and the distribution of normal magnetic field at the surface

- Be 4+ BiX t . . . (31)
By = 85 7 By



The coefficients Bp and A, for symmetric blunt bodies and magnetic fields are
listed in a later section.

The equation governing the zero-order stream function is

FO' o+ FgFY + Bo(1 - FA2) + (1 - F}) =0 (32)

The associated boundary conditions are

Fo(0) = F}(0) =0
(33)

Fé(oo) = 1

A differential operator appearing in the equations for the subsequent F, 1is de-
fined by
LpFn = Fy' + FoFyy - 2(Bg + n)FEF) - AFL + (2n + 1)FSF, (34)

Then
LFy = B (FH - 1) - A (1 - FY) A

LoFp = Bp(FQ? - 1) + 2B1FF] + (By + 2)F]% - 37"
- N1 - FY) + NF] ? (35)

L3

12 _ 12 1t e
53(FO 1) + BlFl + zalFon + ZﬁzFOFl

+ 2(Bg + 3)F{F} - 3F Fy - SFoF] - Az(1 - F§) + AF4 + AzFi-/

The associated boundary conditions are
Fu(0) = FJ(0) = Fi(=) = 0 (36)

In order to solve equations (35) and (36) in terms of functions independent
of the B's and A's, it is convenient to resolve the Fn as follows:

Fy = Bfy 0 * MTo 1
2 2
Fz = Bafz,0 * PIf11,0 * Bahaf1,1 *+ MTp 11 + Apfo,2

- 3 2 2
Fz = Bsls,0 * Pif1a1,0 * BIMT11 1 + BIMTL 11 + BiBaTyz o

3
* Biefy 2 + BoMafz 1 + MTo 111 + MAefo, 12 + Asfo, 3

10



In these equations, subscripts of the f's that precede the comma refer to the

f's; those following the comma refer to the A's.

The system of equations that results for the f-functions is

_ @le
Llfl,O = FO -1

— L -
LlfO,l = FO 1

_ w1l _
L2f2,0 = FO 1

Lpfyy,0 = 2F4f,0 + (Bo + 2)£1% - 3% of1 0
Lof) = 8RS 1 +2(Bg +2)1] oF6 3 - 3(fy of6,1 *0,171,0) * 1,0
Lpfo,11 = £6,1 7 (Bp * 2)£4%) - 3%5 1901
Lofo,2 =
Lsfz o = F§ - 1 A
Lif111,0 = 150 + 2FT1,0 * 280 * )1 of11,0
- 3f1 of11,0 - 571,0%11,0
Laf1z,0 = 2FFS 0 * BRG] o + 2(Bo *+ 3)T1,0%2,0
- 3y of2,0 - 571,0%2,0
Lafyp,q = 201 ofd,1 + 2FFL 1 + 2(Bo + 3)(£] of1 0 * £6,1f11,0)

1 1 131 141
- 309 off 1 - 3fg, 1110 - 5(F1,0f1,1 * £6,1f11,0) * fi1,0

]

Lzfy 11

13

- 3(£1,0f5 11 *+ To,11,1) - 5(1 ofo,11 * T1,1f0,1) * fi1
Lsfy p =2F§E o +2(Bo +3)11 of,2 - 3f1,0%0,2 - 571,070,210
L3f2,1==ZFéfé,l'*Z(Bo‘*E)fé,lfé,O"3fo,1f§,o"5f5,1f2,o'*fé,o

Lafg 111 = 2(Bo +3)%4 175,11 - 5% 170,11 ~ °T0,1%0,11 ¥ T0,11

- 1 1 - 1 - 1 [ 1
Lafg 12 = 2(Bg +3)E 1£4 2 = 30,1%0,2 = 5%0,1%0,2 ¥ f0,2 ¥ 0,1

> (38)

t
=
O

1
I_l
C

2
£88) + 2FEEY 11 + 2(Bg + 3)(f] ofd, 11 + £6,11,1) r

_ @t o_
LSfO,S = FO 1

(39)

1l



Each of the f's satisfies the boundary conditions (eq. (36)).

ENERGY EQUATION

If T 1is the temperature of the fluid and the fluid properties are assumed
constant, the energy equation is

ST o7 ap 32T 3u Ve
pcp<ﬁ %i + V 5§> =0 e + k S;E + gUZB% + pv e (40)

It is apparent that the temperature at the outer edge of the boundary layer is
not constant but is influenced by the pressure gradient and Joule heating. In
this situation boundary conditions are simplified by introducing the total en-
thalpy

1.2

ho=cpl +5U (41)

In terms of a dimensionless enthalpy ratio

h -

S & (42)
e = by

in which h, and h, are constants denoting the values of the enthalpy at the

wall and external to the boundary layer, respectively, the energy equation be-
comes

gy _ vt 1-pr v %P
oX OY " Pr yy2 = “2Pr h_ - by, 3y@

(43)

The right side of this equation vanishes in the free stream, and since the left
side represents a derivative along a streamline, H (or h) is constant there.
Physically, this means that any kinetic energy lost by the fluid in the free
stream is returned to it as Joule heat.

In certain circumstances the nonhomogeneous term of equation (43) has little
influence in the boundary layer. Obviously, if the Prandtl number is near 1, it
is small.

For mercury (Pr = 0.025) the term is negligible for velocities up to 110 me-
ters per second for the maximum temperature difference (between melting point and
boiling point) of 400° C and is negligible for velocities up to 28 meters per
second for s temperature difference of 25° C. If a hot gas is being considered,
it is found that, when the fluid has progressed far enough from the stagnation
point for the nonhomogeneous term to be important, the static temperature has de-
creased to a value at which the conductivity is, perhaps, an order of magnitude
lower than its stagnation value. In such a case the assumption of constant con-
ductivity made here is no longer valid, and, in fact, the magnetohydrodynamic

1z



body term may no longer be gignificant.

When the Prandtl number is set equal to unity in equation (43) and the
boundary-layer transformations (22) and (25) are applied, the equation becomes

Hyq * Pl = 2§(Fan - FéHn) (44)

This equation has been derived in reference 10 and, as shown (ref. 10), it can be
resolved intc a set of ordinary differential equations by expanding H 1in E&:

H = Ho(n) + Hp(n)e + Hz(n)g2 ... (45)

If an operator D, 1s defined as

z
= 4a d
bh= =T

- 2nF! (45)
dn 0

then for each H, there is an equation

D H, = Ry (47)
with the boundary conditions
HO(O) =0 Ho(m) =1
(42)
H,(0) = Hy(=) = 0 n>1

The first two of these boundary conditions satisfy definition (42) at the
surface and at the edge of the boundary layer. The conditions on the Hy(n > 1)
require them to vanish both at the surface and at the edge of the boundary layer,
so that they are correction functions to Hp that operate only with the boundary
layer. The R, are

Bo =0
Ry = -3FHQ
(49)
= = t
R, = 2FjH; - 3FH{ - SF HY

- 1 _ 1
R5 = ZFzHl 3F.H,

1 1 1
1H2 + 4F1H2 - BbF HY - 7FH

271 30

In order to derive equations defining universal functions, it is necessary
to make the further expansions



B = B8y 0 * M8 1

_ 2 z
Uz = Pafo o * P1811,0 * PiMEr 1 * Mg 4y A28, 2

V]

_ 3 2
flz = Bs€3,0 + PiPag12 o * 18117 0 + PeMez,1 + BYME1q 1

2 3
*PINEL 11t BiMagy 2t Mg 111 * MA280,12 * h3gg 3

The g's are determined by

DoHg = 0
D1g1,0 = 3T 0§
Dy8p,1 = -3%p 1H)
Dagz,0 = =513 o )

P2€11,0 = 211 ,081,0 - 31 08] o - 5T11,0H}
]%ngzzﬂil%ﬁo+zﬁLo&L1'Bﬂxl%to'S?go&il'Slem5?
D280,11 = 260,180,1 = 3%0,185,1 - 570,115

Dogo,2 = -5%p, o) y

D3g3,0 = =73, 08

Dzg12,0 =272 081 0 " 9%1,082,0 ¥ 41 082,00 = 5T2, 081 o - 712, 0HY
Qﬁm¢p=zﬁh;ﬁLo‘BﬁﬂﬁﬁLo+“ip%ip"5%1;ﬁLo'7%1;&%
Pz82,1 = 22,080,1 - 300,182 0 + 454,182 0~ 563 080 1 - a2 1H)
D?ﬁhlzﬁEL&%JfSQLﬁﬂLO+M6A%Jﬁ'Sﬁiﬂ&il+ﬁﬁﬂgLO
" 5T1,081,1% 41 01,1 - 5Ty 18] - 70y pH)

—_ 1 1 H 1 = 1
Dﬁhgi‘gﬁguﬁLO'3ﬁﬂ®%ﬂl+Qﬁ;ﬂmll‘“bgi&Lo+ﬁiﬂﬁml

+ 4ff :

0,181,1% 490,181,1 - 5T 180 1 - Ty 198}

— 11 1] jong H t
Dsgl,z"zfo,zgl,o"5f1,ogo,2*'4f1,ogo,2"Dfo,zgl,o"7f1,2Ho

=2f}

- ! 1 1
0,1180,1 = °Tp,180,11 +4F

1
D285 111 0,180,11 ~°%0,1180,1~ "0,111%4

Dzg0,12 =2f6,2€o,1"5fo,1g6,2'+4f6,1%o,2"5fo,2€6,1"7fo,12H6

P 1
Dz8g,3 = =g, 5H)

For each of the g's in equations (51) to (53) the boundary conditions
transform to g(0) = g(w) = O.

14

(51)

(52)

Y
—
w
()}

.)

(48)



COEFFICIENTS OF SERIES EXPANSIONS

In order to apply the solutions to the boundary-layer equations that have
been developed in the preceding section, it is necessary to convert the outer-
velocity and magnetic-field distributions in terms of X into the functions
8(g) and (&) developed as power series. The outer-velocity distribution around
a two-dimensicnal symmetric blunt body is represented by

U = UsX + UXO + UeX° + (54)
e 1 3 5} <ot

It is evident from equation (17) that Uy, Uz, Us, . . . depend upon the
magnetic field as well as on the pressure gradient. The variable £ 1is the in-
tegral

X

2 UL /y\2  UsL® fx\4
_ 1 _ X 3 (X 5Y (X
o [ ) |
@]
where
2
U, L
- 1 .
Re1 = =7 (56)
Gortler shows that for the expansion
2veUg
B(E) = — = Bg * ByE + BgEZ + . (57)
e
the coefficients p5 are
3
Po = 14
2
. B e_léUBL
1 1 2 U
4 o &
_ pe-2 29'U5L 13 UzL &
Pz =Ry"\5 T "7 2 (58)
1 U
1
6 6
sz U Ul UL
Pz =By \ T Top 52 I 3
1 1
. ... . .. )
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The coefficients in the expansion
AE) = 280 — = Ay + MqE + A2 + . . . (59)

depend explicitly upon the specification of the magnetic field as well as the ve-
locity distribution. There are two symmetric types of magnetic field that may be
associated with a blunt body. They correspond to antisymmetric and symmetric
distributions of normal component on the body surface. An example of the first
of these distributions is a two-dimensional dipole field with its axis perpendic-
ular to the axis of the body (sketch (a)),

A

(

wihile an example of the second is a dipole field with its axis coincident with

the body axis (sketch (b)).
<‘ ?ié gé%

(b)

In the first dipole orientation the normal component of the field BY is
antisymmetric about the origin; therefore,

3
By = B{X + BzX” + . . . (60)

16



Then

?\OZO N
N K i
1 Req
2
r - Smafm o (PsL Usb
2 Ref By Uy
4 L4 4 24 2 512
. _Pmfm () OBLEBEE O ULE UL UsLE BsL
° " Rej By p? Uy ué Uy By
-/
where
2
Ryy = onUpl
B
Rhl )
pUT

The second sort of magnetic field is described by

_ 2 4
BY = Bo + BZX + B4X + .

The expansion coefficients for A(¢) are

Mo = RpiBno
2 2
s, = miPno (o BelT s Ush
1~ TRe; By 2 U
4 pppa 3 512 4 214
_Rufuo () Bd BELY  UsS BL?  UsLE oy, URD
&7 Ref Bo B U1 B U 4ot
6 2 G 24 o 12
_Buuo (7 UAS g5 URE ULt UL B® o UZLY Bl
5:—_——————‘— -_ -
Re? £ U 2 U U B ¢ Po
3.6 2 o g4 2 o g4 6 2 g 14
a0t ugfeat gugf et ma® o mrf g
Low Up B 2 U1 B Fo Bo  Fo

> (64)

J
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In these expressions the following definition has been used:

B
R = S (65)

RESULTS OF COMPUTATIONS AND METHOD OF APPLICATION

The "universal" functions defined by equations (37) to (39) and (51) to (53)
have been obtained by numerical integration for Pr =1, By =1, and A =0,
0.z, and 1. The computations were performed on an ERA 1103 digital computer.
Double precision accuracy (20 significant figures) was used throughout the compu-
tations to ensure an adequate number of significant figures in the final results.
Curves of ihe functions are presented in figures 1 to 3, and the values of the
derivatives at the wall are listed in table I.

The functions £ ;» and so forth are universal in the sense that they

3 . g.
J‘)J, l)
apply to any boundary layer started at the origin according to the values given
to BO and AO' In the computations presented here Po is always 1, the value

for a two-dimensional stagnation point; as a result, the functions computed apply
to any symmetric, blunt body. As explained previously, the magnetic fields to
which the functions apply are either symmetric or antisymmetric about the body
axis and of such strength that the products of the dimensionless numbers are

Rp1Bna
Rnifno

The practical results desired from an analysis of the boundary layer such as
that presented here are the skin friction and the heat transfer along the surface
of the body. The former, when expressed in terms of GOrtler's variables, is

0 (antisymmetric field)

]

0.2, 1 (symmetric field)

il

2 N
QUeFDn(E»;O)
~VcE

T =

oU

Dy

Il

{F”(O) + £[By1y o(0) + 27y 1 (0)]

fq
lf“

2 1 Zett 1 2ot n > (66)
tE [Bzfz,o(o)‘*ﬁlfll,o(o)'*51”1f1,1(0>'*”1fo,11(0)'*K2fo,2(oﬂ

3 1 3pn 2 1 2ot
* [EBfS,O(O)'+Blflll,O(O)'flelfll,l(O)'*lelfl,ll(o)
1 1 " 3o
+ BBaT1g o0) + BT o(0) +BaA Tp 1(0) +AYEG 447(0)

F M RaEl 10(0) +hggh 5(0) ] + . } J




The procedure for oblaining the skin friction in this form is to begin with the
serles expansions of the external veloclty (eq. (54)) and the normal component of
the magnetic field at the wall (eg. (£0) or (€3)). The series coefficients may
be obtained either from a sclution of the inviscid flow or from experimental
data. From them one obtains £(X) (eq. (55)), the p's (eq. (58)), and the A's
(eq. (¢1) or (£4)). The second derivatives of Fy and the I's, evaluated at
the wall, are given in table I. These are all the numerical values required for
an evaluation of skin friction according to equation (66).

Likewige the heal transfer 1s given by

k(hg = h)U,
Q- - ey (o)

Cp W/Eg v L

k(he - hw) UL {
/te L Y

i

! b T' b ,7.!
— 12(0) + g[plél)o(o) + Albo}l(o)] P .}
o

The steps for computing this expression are the same as those for skin friction
with the addition of the determination, either analytic or experimental, of the

enthalpies h, and hg.

CONCLUDING REMARKS

A complete illustration of the use of the boundary-layer solutions generated
in the foregoing discussion requires a knowledge of the external inviscid hydro-
magnetic flow about the blunt body. Such information has proved very difficult
to obtain, both experimentally and analytically. Reference 13 discusses the flow
about a circular cylinder from which a dipole magnetic field emanates. Even with
the restricticns of very small field strength and low conductivity, this problem
proves very difficult; therefore, while an overall drag coefficlent can be ex-
tracted from the analysis, the flow 1s not described in detail.

Without investigating a particular configuration, it is possible to antici-
pate that the effect of the magnetic field upon the velocity profile, and thus
upon separation, is likely to be much larger than its influence upon the tempera-
ture profile. This is shown, for example, by the magnitudes of the coefficients
fg}l(o), fé}z(o), f8)5(0), which are coefficients of purely magnetic terms; they

are much larger than the corresponding g's that modify the heat transfer. Thus
R. C. Meyer's conclusion, that the principal effect of the magnetic field on heat
transfer occurs through the modification of the outer flow, is verified to terms
of order three. However, because the effect of the magnetic field upon the sepa-
ration point may be strong, the distance from the stagnation point over which
this statement is true may, in general, be much less than the similarity solution
studied by Meyer would Iindicate.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohic, January 15, 1963
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TABLE T.

VELOCITY AND TEMPERATURE FUNCTIONS

[Blunt body (By = 1); Prandtl number, 1.]

~ WALL VALUES OF DERIVATIVES OF UNIVERSAL

(a) Antisymmetric magnetic field (Ag = O)
Fg 1.23258 78568 12447 || H} 0.57046 52525 020495
1 g . 49384 05876 09244 || g] 4 .08211 54021 43842
2 J
fg N .37484 85804 03703 gé N .04185 72212 39988
b4 2
fg o . 46454 08895 £6132 gé N .06345 31227 78851
2 b
" Y -7 o g =
fll,o -.07720 53879 57963 gil)o -.02104 68203 50582
fi 1 |--12221 20640 84685 | g] 1 [-.03001 33056 75644
2 2
fg 11 |--04796 18827 56968 gé 11 |--01074 50574 18008
2 k]
fg o .35754 69139 47016 ||gd 5 .04355 63514 48833
bl 3
fg o . 44238 30786 69987 gé o .0B272 70799 22428
b J
13 o 1 [y 4
flll,O .02241 54202 50688 glll,o .00825 91634 91093
£ .05514 64324 73607 I .01844 B3956 69484
11,1 £11,1
£y 17 | -04461 07472 52109 ||g] ;7 | -01372 48880 50019
3 )
1 ~ - .
flz,o -.13863 65852 25042 giz’o -.03879 61227 09014
f{ 5 |-.11074 32208 63681 ||g] o |-.02831 20924 24717
2 2
fg 1 |--10896 79251 52002 |gb 1 |--02797 81250 04664
) 3
fg 171 | -01190 31220 34659 ||gd 17| -00340 24247 40087
b J
fs 12 -.08737 51499 90028 gé 15 |--02047 29739 25259
) 2
fg . . 34348 98882 07814 gé 3 .04366 94245 21308
) )

21



TABLE I.

UNIVERSAL VELOCITY AND TEMPERATURE FUNCTIONS

- Continued.

[Blunt body (By = 1); Prandtl number, 1.]

(b) Symmetric magnetic field (%O = 0.2)

WALL VALUES OF DERIVATIVES OF

1

. 31060
. 46802
. 35579
. 44189
.06596
.10417
.04073

. 33851
. 42189

01711
.04206
. 03388

-.11725

.09474
. 09330

. 00305
.07459
. 32687

30130
25635
85554
18576
93769
04¢10
10050
48282
40264
37715
27940
29547
96879
27295
41605

40412
78708

29354

(@]

24933
98567
14712

3

[«

AL
[N
<]

e

.

4
&g

[p)
-
[a%]

74633
43453
39504
05088
17790
12478
87311
10632
01036
65895
83318
013883
87525

H
Hy

1
£1,0

1
20,1

0

07647
.05625
.03774
.05775
. 01741
.0z468
.00B78
.03945
.05727
.00615
01367
.01012
.03z19
.02334
.02209
.00249
.01679
.03966

37867
72011
£8555
56044
37664
£160z
81249
00178
79370
75760
90973




TABLE T.

UNIVERSAL VELOCITY AND TEMPERATURE FUNCTIONS

[Blunt body (B

- Concluded.

0

= 1); Prandtl number, 1.]

(c) Large symmetric magnetic field (Ay = 1)

WALL VALUES OF DERIVATIVES OF

1

. 58533 06966
. 39508 7794
. 29938 68944
L37715 18405
. 04035 05483
.06320 33463
.0z457 34983
. 28830 16653
.36289 31275
.00743 29922
.01816 72938
.01459 20154
.07276 07332
. 05817 50484
.05744 65405
.00386 48724
.04549 40262
. 27938 05871

27504
71235
84807
62848
64961
22469

91466
65514

0.59534
.04087
.02705
.04287

-.00957

-.01331

-.00486

.02871

.04277

.00z246

.00536

.00380

.01790

.01271

.01260

.00094

-. 00900
.02915

[}

83267
91508
75978
69292
43342
71316
04518
96871
06196
38409
26150
67180
1509z
87901
68840
87582
12643
50070

92991
04384
78049
28947
18738
35810
90449
03897
60540
97704
42514
681867

67214
565253
13622
00696
0811z
63649
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